Reaction Coordinate Analysis of the $\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}$ Internal Conversion of Phenylacetylene

Yoshiaki Amatatsu*
Faculty of Engineering and Resource Science, Akita University, Tegata Gakuen-cho, Akita 010-8502, Japan

Received: July 20, 2005; In Final Form: February 1, 2006

Abstract

The reaction coordinate of the $S_{2}-S_{1}$ internal conversion (IC) of phenylacetylene (PA) was analyzed using the ab initio complete active space self-consistent field (CASSCF) method. In the first process after electronic excitation into S_{2}, the aromatic benzene ring is transformed into a nonaromatic quinoid structure. The ethynyl part $(-\mathrm{C} \equiv \mathrm{CH})$ takes an incomplete allenoid structure in which the CC bond elongates to an intermediate value between typical $\mathrm{C} \equiv \mathrm{C}$ triple and $\mathrm{C}=\mathrm{C}$ double bonds, but the bend angle of -CCH is 180°. In the second process, PA takes a complete allenoid structure with an out-of-plane location of the β - H atom (i.e., the H atom of the ethynyl part) and a further elongation of the CC bond so that PA is most stable in S_{2} (S_{2}-bent). The conical intersection between S_{2} and $\mathrm{S}_{1}\left(\mathrm{~S}_{2} / \mathrm{S}_{1}\right.$-CIX) is located near the S_{2}-bent geometry and is slightly unstable energetically. After transition at $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX, PA quickly loses both quinoid and allenoid structures and recovers the aromaticity of the benzene ring in S_{1}. Analysis of the dipole moment along the reaction coordinate shows that the weak electron-withdrawing group of the ethynyl part in S_{0} suddenly changes into an electron-donating group in S_{2} after the main transition of $\mathrm{S}_{0}-\mathrm{S}_{2}$. The photoinduced change of the dipole moment is a driving force to the formation of a quinoid structure in S_{2}. Regarding the benefit of the reaction coordinate analysis of the multidimensional potential energy surfaces of PA, the present picture of the IC process is much more elaborate than our previous representation (Amatatsu, Y.; Hasebe, Y. J. Phys. Chem. A 2003 107, 11169-11173). Vibrational analyses along the reaction coordinate were also performed to support a time-resolved spectroscopic experiment on the $S_{2}-S_{1}$ IC process of PA.

1. Introduction

Internal conversion (IC) from a highly excited state to the lowest state (i.e., $\mathrm{S}_{n}-\mathrm{S}_{1}, n \geq 2$) is recognized as an important process in the photochemistry of π-conjugated molecules. ${ }^{1}$ Regarding the benefit of the recently developed femtosecond time-resolved spectroscopic technique, it has been confirmed in various π-conjugated molecules that the $\mathrm{S}_{n}-\mathrm{S}_{1}$ IC process is extremely rapid: it requires not more than approximately a few hundred femtoseconds. ${ }^{2-7}$ However, the extreme rapidity of the IC process prevents us from obtaining more detailed spectroscopic information with a reliable signal/noise ratio. Particularly, an important conformation of the conical intersection (CIX) within which radiationless transition takes place ${ }^{8}$ is difficult to determine experimentally because the CIX is only a passing point. Therefore, the mechanism of the IC process remains far from realization. To compensate for the disadvantages of experiments, a determination of CIX using a reliable ab initio calculation is a useful alternative approach. However, a CIX is much more difficult to locate than a stable geometry or saddle point of a specific state because a CIX is a cusp at which two potential energy surfaces cross. Recently, we determined CIXs of several important π-conjugated polyatomic organic molecules using an ab initio complete active space selfconsistent field (CASSCF) method. ${ }^{9-11}$ All CIXs that we determined have a common feature: some (more than two) internal coordinates deviate significantly from those at the equilibrium geometry in S_{0}. It remains unclear whether the deviations of internal coordinates occur simultaneously or stepwise to reach the $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX. Calculation of intrinsic reaction coordinates seems to be a good approach to resolve that question

[^0]because the geometrical changes that depend on the reaction coordinate indicate which of the modes among the internal coordinates couple with each other on multidimensional potential energy surfaces. In other words, the pursuit of the reaction coordinate can lend some insight into the internal vibrational redistribution in the IC process. In this study, we applied reaction coordinate analysis to the $S_{2}-S_{1}$ IC process of phenylacetylene (PA). Therefore, we propose a more elaborate model than our previous one ${ }^{9}$ and thereby promote a sophisticated time-resolved spectroscopic experiment.

Herein, we summarize the experimental findings related to the $S_{2}-S_{1}$ IC of PA. We review the photochemistry of PA in our previous report. (i) The $\mathrm{S}_{0}-\mathrm{S}_{2}$ absorption band is strong with diffuse peaks, whereas the $S_{0}-S_{1}$ peak is weak with a rotationally resolved structure. ${ }^{12,13}$ (ii) The diffuse peaks that are overlapped in the $\mathrm{S}_{0}-\mathrm{S}_{2}$ broad absorption band have a constant interval of $1846 \pm 15 \mathrm{~cm}^{-1} .{ }^{14}$ (iii) The $\mathrm{S}_{2}-\mathrm{S}_{1}$ IC is very fast (relaxation time constant $=54 \mathrm{fs}$), whereas the $\mathrm{S}_{1}-$ S_{0} IC is much slower (9.4 and 63 ps$)^{3}$.

2. Method of Calculations

For the present calculations, we adopted a larger scale of 10 electrons in 10 orbitals CASSCF [denoted as $(10,10)$ CASSCF], of which five π-occupied and the lowest five π^{*}-unoccupied orbitals are included. This same basis set was used in previous calculations [i.e., the Huzinaga-Dunning double- ζ (DZ) basis set augmented by polarization $\left(\alpha_{d}=0.75\right)$ on carbon atoms]. ${ }^{9}$ However, we newly optimized several important conformations using a state-specific $(10,10)$ CASSCF to check the extent to which the size of the active space affects geometries. Next, we calculated the reaction path on the S_{2} surface starting from the equilibrium geometry in S_{0} (S_{0} geometry). This reaction path

Figure 1. Numbering of atoms and definition of coordinates in phenylacetylene.
(denoted as path A) finally converges at the most stable geometry in S_{2} (S_{2}-bent). Then, we followed two types of reaction paths starting from $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX. One converges into the S_{2}-bent geometry in S_{2} (path B); the other converges into the globally stable geometry in $S_{1}\left(S_{1}\right.$ geometry) (path C). We also followed several reaction paths from the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ out-of-plane (OP) bent geometries (see Figure 1) to examine the effect of the initial bending motion on the dynamics. In all present ab initio calculations, we used the GAMESS program. ${ }^{15}$

3. Results and Discussion

3.1. Geometries at Important Conformations. We first make a brief mention of the geometries at important conformations for later discussion on the IC process, but we discussed them in detail in relation to each electronic structure in our previous work. ${ }^{9}$ As listed in Table 1, the present $(10,10)$ CASSCF geometries are not much different from our previous $(10,9)$ CASSCF ones. ${ }^{9}$ Regarding the S_{0} geometry, the aromatic benzene ring has some resonance with the ethynyl $(\mathrm{C} \equiv \mathrm{CH})$ part, so that the linkage $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ bond shrinks slightly. The S_{1} geometry is characterized by an enlarged benzene ring because the CC bonds of the benzene ring weaken in S_{1} as a result of a locally $\pi-\pi^{*}$ excited state within the benzene ring. The linkage $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ bond is shorter than that at the S_{0} geometry, which implies that the resonance between the benzene ring and the ethynyl part becomes stronger in S_{1}. The stable geometry in S_{2} under constraint of $C_{2 v}$ symmetry (S_{2}-planar) loses the aromaticity of the benzene ring and comes to adopt a quinoid structure, i.e., $\mathrm{C}^{1} \mathrm{C}^{2}, \mathrm{C}^{3} \mathrm{C}^{4}, \mathrm{C}^{4} \mathrm{C}^{5}$, and $\mathrm{C}^{1} \mathrm{C}^{6}$ become longer, whereas $\mathrm{C}^{2} \mathrm{C}^{3}$ and $\mathrm{C}^{5} \mathrm{C}^{6}$ become shorter. As for the ethynyl part, the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ bond elongates to take an intermediate value between triple $\mathrm{C} \equiv \mathrm{C}$ and double $\mathrm{C}=\mathrm{C}$ bonds; the linkage $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ bond resembles a normal $\mathrm{C}=\mathrm{C}$ double bond. However, it is hard to say that the $\mathrm{C}^{1} \mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ part is an allenoid skeleton in which both CC bonds are similar to normal double bonds. Therefore, we infer that the S_{2}-planar geometry is an incomplete allenoid structure. At the globally stable S_{2}-bent geometry, PA adopts a complete allenoid structure in which the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ bond becomes longer and comes to resemble
a normal $\mathrm{C}=\mathrm{C}$ double bond; the $-\mathrm{C}^{\alpha} \mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bend angle β is approximately 120°. The $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond distance at the S_{2}-bent geometry differs from that at the S_{2}-planar geometry. The former is a typical $\mathrm{C}-\mathrm{H}$ bonded to a $\mathrm{C}=\mathrm{C}$ double bond (i.e., $=\mathrm{C}-\mathrm{H}$), whereas the latter is a typical $\mathrm{C}-\mathrm{H}$ bonded to a $\mathrm{C} \equiv \mathrm{C}$ triple bond (i.e., $\equiv \mathrm{C}-\mathrm{H}$). The difference between these $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bonds can be interpreted in relation to their respective electronic structures. For the S_{2}-bent geometry, respective hybridizations of the $\mathrm{C}^{1}, \mathrm{C}^{\alpha}$, and C^{β} atoms are sp^{2}, sp , and sp^{2}, whereas they are $\mathrm{sp}^{2}, \mathrm{sp}$, and sp at S_{0} geometry and S_{1} geometry. Therefore, the H^{β} atom at the S_{2}-bent geometry favors a location out of the plane of the remaining part. In addition, $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX takes a structure similar to the S_{2}-bent geometry. This implies that a crossing point of $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX is located in the vicinity of the $\mathrm{S}_{2^{-}}$ bent geometry. We did not newly optimize an $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX configuration using the present method of $(10,10)$ CASSCF because of the heavy computational demands in the location of $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX; instead, we used the geometrical parameters yielded by our previous $(8,8)$ CASSCF method. We verified the energy difference between S_{2} and S_{1} at S_{2} / S_{1}-CIX using $(10,10)$ CASSCF and MRMP2. Thereby, we found that the energy differences are too small (0.015 eV by CASSCF, 0.099 eV by MRMP2) to be a CIX. These small differences imply that $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIXs by a larger scale of $(10,10)$ CASSCF or MRMP2 are not very different from that by $(8,8)$ CASSCF.
3.2. Reaction Path from $S_{\mathbf{0}}$ Geometry into $S_{\mathbf{1}}$ Geometry. In this subsection, we describe the main interest of the reaction path from the S_{0} geometry into the S_{1} geometry. In Figure 2, we show the energy profiles of paths A-C. Path A, for which the reaction coordinate is labeled s_{A}, starts from the S_{0} geometry in S_{2} and converges into the most stable geometry in S_{2} (i.e., S_{2}-bent) (see Figure 2a). Paths B and C, for which the reaction coordinate is labeled as S_{BC} in Figure 2b, start from $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX and converge into the S_{2}-bent geometry in S_{2} and the S_{1} geometry in S_{1}, respectively. Figure 3 shows characteristic geometrical parameters along the reaction coordinate. From energy profiles and geometrical changes, we can determine that the $S_{2}-S_{1}$ IC process of PA consists of four subprocesses, denoted as PR1, PR2, PR3, and PR4 hereafter. In the following paragraphs, we discuss these processes in relation to geometrical changes.

In PR1 ($0 \leq \mathrm{s}_{\mathrm{A}} \leq 0.895$ in Figure 2a), the energy in S_{2} is lowered quickly from the S_{0} geometry. The skeletal bond distances change greatly (see Figure 3a). The $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ bond elongates to an intermediate value between a typical $\mathrm{C} \equiv \mathrm{C}$ triple bond and a $\mathrm{C}=\mathrm{C}$ double bond. The linkage $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ bond shrinks into a normal double bond in coincidence with elongation of

TABLE 1: Characteristic Optimized Parameters of PA by $(\mathbf{1 0}, \mathbf{1 0})$ CASSCF

	S_{0}	S_{1}	S_{2}-planar	S_{2}-bent	$\mathrm{S}_{2} / \mathrm{S}_{1}-\mathrm{CIX}^{a}$
Bond Distances (A)					
$R\left(\mathrm{C}^{\alpha}-\mathrm{C}^{\beta}\right)$	$1.215(1.216)^{b}$	1.221 (1.210)	1.289 (1.281)	1.331	1.338
$R\left(\mathrm{C}^{1}-\mathrm{C}^{\alpha}\right)$	1.448 (1.448)	1.424 (1.417)	1.360 (1.358)	1.359	1.358
$R\left(\mathrm{C}^{1}-\mathrm{C}^{2}\right)$	1.405 (1.395)	1.447 (1.446)	1.475 (1.456)	1.477	1.482
$R\left(\mathrm{C}^{2}-\mathrm{C}^{3}\right)$	1.398 (1.395)	1.438 (1.438)	1.368 (1.372)	1.364	1.370
$R\left(\mathrm{C}^{3}-\mathrm{C}^{4}\right)$	1.401 (1.398)	1.432 (1.432)	1.470 (1.445)	1.454	1.411
$R\left(\mathrm{C}^{4}-\mathrm{C}^{5}\right)$	1.401 (1.398)	1.432 (1.432)	1.470 (1.445)	1.454	1.411
$R\left(\mathrm{C}^{5}-\mathrm{C}^{6}\right)$	1.398 (1.395)	1.438 (1.438)	1.368 (1.372)	1.364	1.370
$R\left(\mathrm{C}^{\beta}-\mathrm{H}^{\beta}\right)$	1.058 (1.059)	1.058 (1.059)	1.057 (1.058)	1.078	1.080
Bond Angles (deg)					
$\alpha\left(-\mathrm{C}^{1} \mathrm{C}^{\alpha} \mathrm{C}^{\beta}\right)$	180.0 (180.0)	180.0 (180.0)	180.0 (180.0)	177.3	179.7
$\beta\left(-\mathrm{C}^{\alpha} \mathrm{C}^{\beta} \mathrm{H}^{\beta}\right)$	180.0 (180.0)	180.0 (180.0)	180.0 (180.0)	125.6	121.3
Dihedral Angles (deg)					

${ }^{a}$ Values are taken from ref $9 .{ }^{b}$ Values in the parentheses taken from ref 9 were obtained by $(10,9) \mathrm{CASSCF}$.

Figure 2. Potential energy profiles (solid line) along the reaction coordinate by means of $(10,10) \mathrm{CASSCF}$. The dotted line represents the potential energy of the counter state. (a) Path A. (b) Paths B and C.
$\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$. As for the bond distances in the benzene ring, $\mathrm{C}^{1} \mathrm{C}^{2}$ (and $\mathrm{C}^{1} \mathrm{C}^{6}$) and $\mathrm{C}^{3} \mathrm{C}^{4}$ (and $\mathrm{C}^{4} \mathrm{C}^{5}$) become longer in coincidence with elongation of $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$, whereas $\mathrm{C}^{2} \mathrm{C}^{3}$ (and $\mathrm{C}^{5} \mathrm{C}^{6}$) shrink into a normal $\mathrm{C}=\mathrm{C}$ double bond. In other words, the aromaticity of the benzene ring is lost, and a quinoid structure is formed. As shown in Figure 3b, the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond distance remains almost unchanged from that of a typical $\equiv \mathrm{C}-\mathrm{H}$ bond. The bend angle β is almost constant at 180°, meaning that the hybridizations of both the C^{β} and C^{α} atoms are sp, even at the end of PR1. Therefore, PR1 is interpreted as the formation of a quinoid structure, almost retaining a $C_{2 v}$ planar geometry. The end of PR1 corresponds to an incomplete allenoid of S_{2}-planar geometry mentioned above.

In the second process of PR2 ($\mathrm{s}_{\mathrm{A}} \geq 0.895$), where PA reaches the most stable S_{2}-bent geometry, the following characteristic changes occur: The $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ bond elongates into a normal $\mathrm{C}=\mathrm{C}$ double bond, whereas $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ remains almost unchanged as a normal $\mathrm{C}=\mathrm{C}$ double bond. The $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ distance changes from a typical $\equiv \mathrm{C}-\mathrm{H}$ bond into $=\mathrm{C}-\mathrm{H}$ bond in coincidence with elongation of $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$. The bend angle β also changes from 180° to ca. 120°. These changes in geometry reflect the change in the hybridization of the C^{β} atom from sp into sp^{2} in PR2. Therefore, PR2 is interpreted as a completion process of an allenoid structure of the ethynyl part.

During the passage from the S_{2}-bent geometry to $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX [i.e., PR3 $\left(\mathrm{s}_{\mathrm{BC}} \leq 0.0\right)$], the energy profile is inclined slightly by 0.104 eV . All geometrical parameters change only slightly (see Figure $3 c, d$). These facts imply that electronically excited PA in S_{2} that starts from the S_{0} geometry is unlikely to be trapped at the most stable of S_{2}-bent geometry. It immediately passes over $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX to relax into S_{1}.

After relaxation into S_{1} at S_{2} / S_{1}-CIX [i.e., PR4 ($\mathrm{s}_{\mathrm{BC}} \geq 0.0$)], the energy decreases monotonically into the most stable geometry in S_{1} (i.e., S_{1} geometry) after the transition at S_{2} / S_{1-} CIX (see Figure 2b). The characteristic allenoid and quinoid structures disappear quickly. That is, $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ shrinks into a normal triple $\mathrm{C} \equiv \mathrm{C}$ bond, and $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ elongates from a normal $\mathrm{C}=\mathrm{C}$ double bond. The benzene ring recovers its aromaticity so that PA in S_{1} relaxes into an S_{1} geometry characterized by an enlarged benzene ring. Coincident with these changes, the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta} \mathrm{H}^{\beta}$ part again takes a linear shape (i.e., $\beta=180^{\circ}$), and the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond shrinks into a typical $\equiv \mathrm{C}-\mathrm{H}$ bond. These geometric changes after the transition into S_{1} at $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX can
be understood in relation to the change of hybridization of the C^{β} atom from sp^{2} into sp .

On the basis of the above discussion, we can depict the $\mathrm{S}_{2}-$ S_{1} IC of PA; it is shown schematically in Figure 4. We also include a comment on the definitions of three coordinates in Appendix 1. In the first process, immediately after electronic excitation into S_{2} at the S_{0} geometry, the PA skeleton changes greatly, maintaining a substantially planar structure. That is, the aromatic benzene ring changes to adopt a quinoid structure, and the ethynyl part changes into an incomplete allenoid structure. In the second process, PA comes to take a complete allenoid structure in which two bonds of $\mathrm{C}^{1} \mathrm{C}^{\alpha}$ and $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ are similar to normal double bonds and the H^{β} atom is located out of the plane of the other part. In the third process, PA reaches S_{2} / S_{1}-CIX with a slightly inclined energy profile against the most stable geometry in $S_{2}\left(S_{2}\right.$-bent). In the fourth process, PA relaxes into S_{1} at S_{2} / S_{1}-CIX and quickly recovers its aromaticity with an enlarged benzene ring. The ethynyl part changes from an allenoid $=\mathrm{C}=\mathrm{CH}$ structure into $-\mathrm{C} \equiv \mathrm{CH}$. Finally, PA relaxes into the stable S_{1} geometry, which is characterized as an enlarged benzene ring with $C_{2 v}$ geometry. In the series of processes mentioned above, the important internal coordinates are different. In other words, the geometrical changes of some internal coordinates in one process bring about those of other internal coordinates in the following process. Therefore, we conclude that the strong mode couplings of the potential energy surfaces, which depend on the reaction coordinate, are a driving force for the effective and fast $S_{2}-S_{1}$ IC process of PA, despite the fact that the $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX is far from S_{0} geometry.

In concluding this subsection, we note that more sophisticated MRMP2 reaction coordinate analyses will change the present scheme of $(10,10)$ CASSCF. Figure 5 depicts the energy profile by MRMP2 energetic correction against that by CASSCF shown in Figure 2. The features of the energy profile are retained even by MRMP2 energetic correction, except that the energies are reduced by ca. 1 eV . Consequently, we infer that our present model will not be changed greatly, even by a more sophisticated MRMP2 reaction coordinate analysis.
3.3. Effect of the Initial Bending Motion around the $\mathbf{S}_{\mathbf{0}}$ Geometry. The electronically excited PA in S_{2} is likely to move around the reaction path described in the preceding subsection, even taking into account the zero-point vibrations in S_{0} around the S_{0} geometry. However, to characterize the process more

Figure 3. Characteristic geometrical parameters along the reaction coordinate for (a,b) path A and (c, d) paths B and C. a and c describe changes of bond distances of the PA skeleton. The bond distances of $\mathrm{C}^{1} \mathrm{C}^{6}, \mathrm{C}^{5} \mathrm{C}^{6}$, and $\mathrm{C}^{4} \mathrm{C},{ }^{5}$ which are not drawn, are substantially identical to those of $\mathrm{C}^{1} \mathrm{C}^{2}$, $\mathrm{C}^{2} \mathrm{C}^{3}$, and $\mathrm{C}^{3} \mathrm{C}^{4}$, respectively. b and d describe those of the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond distance and the $-\mathrm{C}\left(\mathrm{C}^{\beta} \mathrm{H}^{\beta}\right.$ bending angle β.
realistically, it is worthwhile commenting on the degree to which zero-point vibrations in S_{0} affect the IC process after electronic excitation into S_{2}. For the following two reasons, we specifically address the effect of the initial $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending motion that is exerted: (i) the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending vibration is of a lowfrequency mode and (ii) a large geometrical change from S_{0} geometry into $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX is the bend angle of $-\mathrm{C}^{\alpha} \mathrm{C}^{\beta} \mathrm{H}^{\beta}$.

Figure 1 shows that the direction of the OP motion corresponds to the y coordinate. For that reason, the H^{β} atom was placed out of the plane of the remaining part by $y=0.05(\beta=$ $\left.177.3^{\circ}\right), 0.10\left(\beta=174.6^{\circ}\right), 0.15\left(\beta=171.9^{\circ}\right)$, and $0.21 \AA$ (more accurately, $y=0.2113, \beta=168.5^{\circ}$), keeping the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ distance at that of the S_{0} geometry. We hereafter call these configurations $\mathrm{S}_{0} \mathrm{~B} 05, \mathrm{~S}_{0} \mathrm{~B} 10, \mathrm{~S}_{0} \mathrm{~B} 15$, and $\mathrm{S}_{0} \mathrm{~B} 21$, respectively. Appendix 2 describes the determination of the OP distance of $\mathrm{S}_{0} \mathrm{~B} 21$ (i.e., $y=0.21 \AA$), which is approximately the amplitude of the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending motion. Figure 6 depicts energy profiles of the bent geometries and the S_{0} geometry. The energy profiles of the bent geometries apparently differ from that of the S_{0} geometry. More careful inspection, however, reveals a common feature: each energy profile has an inflection point. Table 2 reports information related to those inflection points. This table reveals that
the bend angle and the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond distance are not much different from those at the corresponding initial geometries. On the other hand, the skeletal bond distances change greatly from those at the corresponding initial geometries. Consequently, the benzene ring changes from an aromatic to a quinoid structure. In addition, the ethynyl part comes to take an incomplete allenoid skeleton structure. In Figure 7, we show geometrical changes along the reaction coordinate starting from the largest initial bent geometry of $\mathrm{S}_{0} \mathrm{~B} 21$. They are similar to those of S_{0} geometry in Figure 2b,c, except for bend angle β at the early stage. Therefore, we can conclude that each inflection point is the ending point of PR1 as well as the starting point of PR2. At each inflection point, in other words, hybridization of the C^{β} atom switches from sp into sp^{2}, although the position is strongly dependent on the initial bend angles. These discussions foster the conclusion that electronically excited PA in S_{2} around the S_{0} geometry takes a similar path to reach the most stable S_{2}-bent geometry. That is, the skeletal π-conjugated system is first destroyed to form an incomplete allenoid structure, and then an out-of-plane bending of the H^{β} atom takes place to form a complete allenoid structure, irrespective of the initial bend angle. However, we can also find that the initial $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP

Figure 4. Schematic representation of the $S_{2}-S_{1}$ internal conversion of PA. The meanings of allenoid and enlarged benzene on the ordinate are described in Appendix 1.
bending motion in S_{0} clearly affects the dynamics. Figure 5 shows that a larger initial bend angle β indicates a shorter distance to an inflection point (shown digitally in Table 2) as well as a stable region of the S_{2}-bent geometry. This fact implies that a more violent initial $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending motion will cause PA to reach the S_{2}-bent geometry more quickly. Later, we will comment further on the initial bending motion.
3.4. Dipole Moments along the Reaction Coordinate. The dipole moment as a function of reaction coordinate provides new insight into the substituent effect of the ethynyl group on the IC process. Table 3 lists the y and z components of the dipole moments (see Figure 1 for the directions of the x, y, and z axes). The x component is essentially zero in processes PR1-PR4 because PA retains almost complete C_{s} symmetry (the $y z$ plane is the symmetry plane). Therefore, our concern is only the y and z components $\left(\mu_{y}\right.$ and $\left.\mu_{z}\right)$ as a function of the reaction
coordinate. Actually, μ_{y} is a good measure for the degree to which the H^{β} atom deviates from the plane of the other part. In PR1, μ_{y} is fundamentally 0 D because PA takes a planar structure. In PR2, in turn, the μ_{y} component becomes large in concert with the decrease of the bend angle β. In PR3, μ_{y} remains almost unchanged because the bend angle is little changed. In PR4, μ_{y} quickly converges to 0 D because the ethynyl part recovers its linear shape in S_{1}.

The z component μ_{z} exhibits an extremely interesting behavior along the reaction coordinate. The μ_{z} component in S_{0} at the S_{0} geometry takes a small negative value (-0.555 D), meaning that the electron is transferred slightly from the benzene ring into the ethynyl part. Such behavior is consistent with a wellknown finding that the ethynyl group is electron-withdrawing, but the electron-withdrawing capability is much weaker than that of an isoelectronic molecule of benzonitrile (-4.831 D); they are compared in Table 3. Upon electronic excitation of S_{2} at the S_{0} geometry (i.e., $\mathrm{s}_{\mathrm{A}}=0.0$), however, μ_{z} suddenly takes a large positive value (2.796 D). This change indicates that the ethynyl part changes from an electron-withdrawing to an electron-donating group through electronic excitation into S_{2}, whereas it does not change through electronic excitation into S_{1}. Table 3 shows the Mulliken charge in each fragment. Apparently, a large positive value of μ_{z} in S_{2} is ascribed to the electron transfer from the ethynyl into the phenyl group. This electron transfer serves to destroy the aromatic benzene ring and to form a quinoid structure. At the S_{2}-planar geometry, μ_{z} takes a much smaller value, but it is still positive, which is ascribed to a skeletal relaxation on the S_{2} surface. In PR2, μ_{z} changes from positive to negative values in coincidence with the decrease of bend angle β and the further elongation of the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ bond. These geometrical changes serve to push electrons back into the terminal $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ part. In PR4, after the transition at $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX (i.e., $\mathrm{S}_{\mathrm{BC}}=0.0$), μ_{z} converges quickly to the value at the S_{1} geometry in coincidence with the formation of the S_{1} geometry.

The dipole moment, which is dependent on the reaction coordinate, is closely related to the successive geometrical changes described above. That is, the sudden change of the electron-withdrawing group into an electron-donating group upon electronic excitation into S_{2} is a trigger for an effective and fast $S_{2}-S_{1}$ IC process of PA. Additionally, we comment on the effect of the initial $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending mode on the dipole

Figure 5. Potential energy profiles (solid line) along the reaction coordinate using MRMP2 with the (10,10)CASSCF wave function. The dotted line represents the potential energy of the counter state. (a) Path A. (b) Paths B and C.

TABLE 2: Summary of the Features at Inflection Points in $\mathbf{S}_{\mathbf{2}}$

| initial geometry
 inflection point ${ }^{a}$ | $\mathrm{~S}_{0}$ geometry | $\mathrm{S}_{0} \mathrm{~B} 05$ | $\mathrm{~S}_{0} \mathrm{~B} 10$ | $\mathrm{~S}_{0} \mathrm{~B} 15$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0.649 | | | | |
| | 0.895 | 0.698 | 0.649 | 0.599 |

${ }^{a} \mathrm{~S}_{\mathrm{A}}$ in amu. ${ }^{b}$ Values in the parentheses are those at S_{0} geometry. ${ }^{c}$ Values of the bond distances at the initial bent geometries, which are not shown, are the same as those at S_{0} geometry. ${ }^{d}$ Values in parentheses are those at the initial bent geometries.

TABLE 3: Dipole Moment Components and Mulliken Charges at Important Conformations of PA and Related Molecules ${ }^{a}$

reaction coordinate (amu)	state	dipole moment (D)		Mulliken charge		
		μ_{z}	μ_{y}	$\mathrm{C}^{\beta} \mathrm{H}^{\beta}$	C^{α}	phenyl
Phenylacetylene						
$\mathrm{s}_{\mathrm{A}}=0.0\left(\mathrm{~S}_{0}\right.$ geometry $)$	S_{0}	-0.555	0.0	-0.185	0.060	0.125
	S_{1}	-0.546	0.0	-0.188	0.066	0.122
	S_{2}	2.796	0.0	-0.127	0.166	-0.039
$\mathrm{s}_{\mathrm{A}}=0.0\left(\mathrm{~S}_{0} \mathrm{~B} 21\right)$	S_{2}	2.620	-0.296	-0.125	0.157	-0.032
$\mathrm{s}_{\mathrm{A}}=0.895\left(\mathrm{~S}_{2}\right.$-planar) ${ }^{\text {b }}$	S_{2}	0.689	0.0	-0.161	0.093	0.068
$\mathrm{s}_{\mathrm{A}}=1.566$	S_{2}	0.247	-0.430	-0.147	0.054	0.093
$\mathrm{s}_{\mathrm{A}}=1.966$	S_{2}	-0.253	-0.625	-0.129	0.010	0.119
$\mathrm{s}_{\mathrm{A}}=2,936\left(\mathrm{~S}_{2} \text {-bent }\right)^{\text {b }}$	S_{2}	-1.158	-0.793	-0.115	-0.025	0.140
$\mathrm{S}_{\mathrm{BC}}=0.0\left(\mathrm{~S}_{2} / \mathrm{S}_{1}-\mathrm{CIX}\right)$	S_{1}	-1.519	-0.795	-0.114	-0.032	0.146
$\mathrm{S}_{\mathrm{BC}}=1.033$	S_{1}	-0.966	-0.405	-0.160	0.029	0.131
S_{1} geometry	S_{1}	-0.503	0.0	-0.186	0.074	0.112
Benzonitrile ${ }^{b}$						
S_{0} geometry	S_{0}	-4.831	0.0	-0.159	-0.087	0.246

[^1]

Figure 6. Potential energy profiles along the reaction coordinate from the initial bent geometries and S_{0} geometry.
moment. As Table 2 shows, the μ_{x} and μ_{z} components at each inflection point do not differ greatly from their corresponding initial values. This lack of change reflects the fact that

TABLE 4: Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ of the \boldsymbol{v}_{5} Band

reaction coordinate	state	frequency ${ }^{a}$
$\mathrm{~S}_{\mathrm{A}}=0.0\left(\mathrm{~S}_{0}\right.$ geometry $)$	S_{0}	$2126\left(2120^{b}\right)$
0.0	$\mathrm{~S}_{2}$	2035
0.100	$\mathrm{~S}_{2}$	1991
0.200	$\mathrm{~S}_{2}$	1942
0.895	$\mathrm{~S}_{2}$	1909
$\mathrm{~S}_{\mathrm{BC}}=0.0\left(\mathrm{~S}_{2} / \mathrm{S}_{1}-\mathrm{CIX}\right)$	S_{1}	1806
0.296	$\mathrm{~S}_{1}$	1805
0.569	$\mathrm{~S}_{1}$	1861
0.752	$\mathrm{~S}_{1}$	1928
0.908	$\mathrm{~S}_{1}$	1963
1.033	$\mathrm{~S}_{1}$	1983
1.222	$\mathrm{~S}_{1}$	2004
1.373	$\mathrm{~S}_{1}$	2017
1.500	$\mathrm{~S}_{1}$	2025
$\mathrm{~S}_{1}$ geometry	S_{1}	$2055\left(2065^{c}\right)$

${ }^{a}$ Force constants are commonly scaled down by 0.90 , but those related to $\mathrm{C}-\mathrm{H}$ stretches are scaled down by $0.82 .{ }^{b}$ Experimental result taken from ref 16. ${ }^{c}$ Experimental result taken from ref 12.
3.5. Vibrational Analysis along the Reaction Coordinate. The vibrational analysis along the reaction coordinate can be closely related to the temporal behavior in the IC process, which can be verified through a time-resolved transient spectroscopic experiment. Table 4 shows the vibrational frequency of the v_{5} band of the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ stretch as a function of reaction coordinate. To the extent that PA stays in S_{2}, the characteristic $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ stretch is expected to be observed in the region of $2000-1800 \mathrm{~cm}^{-1}$, which is a typical region of allenoid stretch frequencies. Actually, by means of a direct absorption spectroscopic experiment that reflects the early stage after electronic excitation into S_{2}, the characteristic allenoid stretch is observed in 1846 ± 15 $\mathrm{cm}^{-1} .{ }^{13}$ On the other hand, once PA relaxes into S_{1}, the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ stretch in the allenoid region disappears quickly and emerges in the $\mathrm{C} \equiv \mathrm{C}$ triple bond region. These discussions imply that a characteristic transient absorption band is expected to be observed in the allenoid region only during a short period in S_{2} (54 fs at most, by experimental estimation ${ }^{3}$).

Furthermore, we can point out the following aspects of the behavior of PA in S_{2} in relation to a spectroscopic experiment. One is that the $\mathrm{C}^{\alpha} \mathrm{C}^{\beta}$ stretch frequency in S_{2} is strongly dependent on the reaction coordinate even in the allenoid region: the vibrational frequency decreases quickly from 2000 to $1800 \mathrm{~cm}^{-1}$. The other is that the initial $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP bending motion affects the time to reach the stable S_{2}-bent geometry after electronic excitation into S_{2}. That is, a higher temperature yields more species with vibrationally excited $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP motion around the S_{0} geometry. Consequently, the lifetime in S_{2} after electronic excitation is expected to be shorter. However, these conjectures might be difficult to verify experimentally for the moment because the $\mathrm{S}_{2}-\mathrm{S}_{1}$ IC process is too fast.

4. Concluding Remarks

In this article, we reported the reaction coordinate of the $\mathrm{S}_{2}-$ S_{1} IC of PA. Analyses of the reaction coordinate show that several internal coordinates couple strongly with each other in the $S_{2}-S_{1}$ IC process. Upon electronic excitation into S_{2}, the aromatic benzene ring becomes a quinoid structure, and the ethynyl part changes into an incomplete allenoid skeleton. Then, PA takes a complete allenoid structure of the ethynyl part to reach $\mathrm{S}_{2} / \mathrm{S}_{1}$-CIX where the radiationless relaxation takes place. Once PA relaxes into S_{1} at S_{2} / S_{1}-CIX, it changes quickly into the most stable geometry in S_{1}, which is characterized by an enlarged benzene ring. The strong mode couplings among the internal coordinates on the multidimensional potential energy
surfaces in S_{1} and S_{2} bring about an effective internal vibrational redistribution. Thereby, the $S_{2}-S_{1}$ IC process is very fast: on the order of several tens of femtoseconds. The dipole moment component that is parallel to the long axis is strongly dependent on the electronic state and conformation. In S_{0} and S_{1}, it is confirmed that the ethynyl group is a weak electron-withdrawing group. Upon electronic excitation of S_{2}, on the other hand, the ethynyl group changes to become an electron-donating group, which induces PA to form a quinoid structure at the early stage. Results of vibrational analysis along the reaction coordinate show that the characteristic key band of the allenoid stretch is strongly dependent on the conformation and the electronic state in the $S_{2}-S_{1}$ IC process.

Acknowledgment. We are grateful to Dr. Stolow (National Research Council of Canada) who informed us of recent experimental work related to π-conjugated systems. Numerical calculations were performed partly at the Computer Center of Institute for Molecular Science. This work was supported financially by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Supporting Information Available: All Cartesian coordinates at the important conformations mentioned in section 3.1 are available via the Internet at http://pubs.acs.org.

Appendix 1

Figure 4 presents three coordinates to clarify the IC process. The "allenoid" coordinate in the upper ordinate represents the degree to which the ethynyl part ($-\mathrm{C}^{\alpha} \equiv \mathrm{C}^{\beta} \mathrm{H}^{\beta}$) takes an allenoid structure $\left(=\mathrm{C}^{\alpha}=\mathrm{C}^{\beta} \mathrm{H}^{\beta}\right)$. As mentioned above, the formation of the allenoid structure is related closely to that of the quinoid structure in the benzene ring. Therefore, the allenoid coordinate also involves the degree to which PA loses its aromaticity in the benzene ring. The "enlarged benzene" in the lower ordinate represents the degree to which the benzene ring expands with the hexagon. The abscissa represents the $-\mathrm{C}^{\alpha} \mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bend angle β.

Appendix 2

The calculated ν_{29} band of $597 \mathrm{~cm}^{-1}\left(613 \mathrm{~cm}^{-1}\right.$ by experiment ${ }^{16}$) is assigned to the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP mode because the L-matrix component (0.970) related to the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ OP mode is almost unity. For that reason, we estimated the largest OP deviation from the S_{0} geometry by the calculated ν_{29} vibration. The results showed that only the y component of the H^{β} atom takes a large value $(0.2113 \AA)$) the others are very small (less than 0.0220 \AA). Therefore, we put the H^{β} atom at $y=0.21 \AA$, keeping the $\mathrm{C}^{\beta} \mathrm{H}^{\beta}$ bond distance at that of the S_{0} geometry.

References and Notes

(1) Stock, G.; Domcke, W. Adv. Chem. Phys. 1997, 100, 1-169.
(2) Stolow, A. Annu. Rev. Phys. Chem. 2003, 54, 89-119.
(3) Polivka, T.; Zigmantas, D.; Frank, H. A.; Bautista, J. A.; Herek, J. L.; Koyama, Y.; Fujii, R.; Sundstrom, V. J. Phys. Chem. B 2001, 105, 1072-1080.
(4) Lee, S.-H.; Tang, K.-C.; Chen, I.-C.; Underwood, J. G.; Stolow, A.; Schmitt, M.; Shaffer, J. P.; Schultz, T.; Zgierski, M. Z. J. Phys. Chem. A 2002, 106, 8979-8991.
(5) Fuss, W.; Pushpa, K. K.; Rettig, W.; Schmid, W. E.; Trushin, S. A. Photochem. Photobiol. Sci. 2002, 1, 255-262.
(6) McCamant, D. W.; Kukura, P.; Mathies, R. A. J. Phys. Chem. A 2003, 107, 8208-8214.
(7) Shah, B. K.; Rodgers, M. A. J.; Neckers, D. C. J. Phys. Chem. A 2004, 108, 6087-6089.
(8) Domcke, W.; Yarkony, D. R.; Köppel, H. Conical Intersections, Electronic Structure, Dynamics \& Spectroscopy; Advanced Series of Physical Chemistry; World Scientific Publishing Co. Pty. Ltd.: Singapore, 2004; Vol. 15.
(9) Amatatsu, Y.; Hasebe, Y. J. Phys. Chem. A 2003, 107, 1116911173.
(10) Amatatsu, Y. Chem. Phys. Lett. 1999, 314, 364-368; Chem. Phys. Lett. 2001, 344, 200-206; J. Comput. Chem. 2002, 23, 950-956, Chem. Phys. Lett. 2003, 369, 673-679; THEOCHEM 2003, 624, 159-167; J. Phys. Chem. A 2005, 109, 7225-7235.
(11) Amatatsu, Y.; Hosokawa, M. J. Phys. Chem. A 2004, 108, 1023810244.
(12) King, G. W.; So, S. P. J. Mol. Spectrosc. 1971, 37, 543-570.
(13) Ribblett, J. W.; Borst, D. R.; Pratt, D. W. J. Chem. Phys. 1999, 111, 8454-8461.
(14) Leopold, D. G.; Hemley, R. J.; Vaida, V.; Roebber, J. L. J. Chem. Phys. 1981, 75, 4758-4769.
(15) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347-1363.
(16) King, G. W.; So, S. P. J. Mol. Spectrosc. 1970, 36, 468-487.

[^0]: * E-mail: amatatsu@ipc.akita-u.ac.jp. Fax: +81-18-889-2601.

[^1]: ${ }^{a}$ Strictly speaking, $\mathrm{s}_{\mathrm{A}}=0.895$ is not the S_{2}-planar geometry because the configuration of the S_{2}-planar geometry in Table 1 is obtained under the constraint of $C_{2 v}$ symmetry, whereas the geometry at $\mathrm{s}_{\mathrm{A}}=0.895$ is not. However, the two geometries are substantially identical; we call $\mathrm{s}_{\mathrm{A}}=$ 0.895 the S_{2}-planar geometry, for convenience. Using similar reasoning, the geometry at $\mathrm{s}_{\mathrm{A}}=2.936$ is called the S_{2}-bent geometry. ${ }^{b}$ Geometry was optimized at the restricted Hartree-Fock level with a similar basis set (i.e., DZ plus polarization for C and N atoms, DZ for H atoms).

